63 research outputs found

    Preliminary Feasibility of Dedicated Breast CT With an Inverse Geometry

    Get PDF
    In this study we theoretically investigated the minimum scan time of an inverse-geometry dedicated breast CT system that provides sufficient sampling and dose equivalent to mammography without exceeding the limits of source power or detector count rate. The inverse geometry, which utilizes a large-area scanned source and a narrower photon-counting detector, is expected to have improved dose efficiency compared to cone-beam methods due to reduced scatter effects and improved detector efficiency. The analysis assumed the specifications of available inverse-geometry source and detector hardware (SBDX, NovaRay, Inc, Newark CA). The scan time was calculated for a 10, 14, and 18-cm diameter breast composed of 50% glandular / 50% adipose tissue. The results demonstrate a minimum scan time of 6.5, 14.3, and 14.7 seconds for a 10, 14, and 18-cm-diameter breast, respectively. The scan times are comparable to those of proposed cone-beam systems. For all three breast sizes, the scan time was limited by the detector count rate. For example, for the 14-cm-diameter breast, the minimum scan time that met the source power limitation was 1.1 seconds, and the minimum scan time that achieved sufficient sampling was 0.8 seconds. The scan time can be reduced by increasing the detector count rate or area. Effective bowtie filters will be required to prevent detector saturation at the object edges. Overall, the results support preliminary feasibility of dedicated breast CT with an inverse geometry

    An Empirical Method for Correcting the Detector Spectral Response in Energy-Resolved CT

    Get PDF
    Energy-resolving photon-counting detectors have the potential for improved material decomposition compared to dual-kVp approaches. However, material decomposition accuracy is limited by the nonideal spectral response of the detectors. This work proposes an empirical method for correcting the nonideal spectral response, including spectrum-tailing effects. Unlike previous correction methods which relied on synchrotron measurements, the proposed method can be performed on the scanner. The proposed method estimates a spectral-response matrix by performing x-ray projection measurements through a range of known thicknesses of two or more calibration materials. Once estimated, the spectral-response matrix is incorporated into conventional material decomposition algorithms. A simulation study investigated preliminary feasibility of the proposed method. The spectral-response matrix was estimated using simulated projection measurements through PMMA, aluminum, and gadolinium. An energy-resolved acquisition of a thorax phantom with gadolinium in the blood pool was simulated assuming a five-bin detector with realistic spectral response. Energy-bin data was decomposed into Compton, photoelectric, and gadolinium basis projections with and without the proposed correction method. Basis images were reconstructed by filtered backprojection. Results demonstrated that the nonideal spectral response reduced the ability to distinguish gadolinium from materials such as bone, while images reconstructed with the proposed correction method successfully depicted the contrast agent. The proposed correction method reduced errors from 9% to 0.6% in the Compton image, 90% to 0.6% in the photoelectric image and from 40% to 6% in the gadolinium image when using a three-material calibration. Overall, results support feasibility of the proposed spectral-response correction method.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Experimental study of optimal energy weighting in energy-resolved CT using a CZT detector

    Get PDF
    Recent advances in energy-resolved CT can potentially improve contrast-to-noise ratio (CNR), which could subsequently reduce dose in conventional and dedicated breast CT. Two methods have been proposed for optimal energy weighting: weighting the energy-bin data prior to log normalization (projection-based weighting) and weighting the energy-bin data after log normalization (image-based weighting). Previous studies suggested that optimal projection-based and image-based energy weighting provide similar CNR improvements for energy-resolved CT compared to photon-counting or conventional energy-integrating CT. This study experimentally investigated the improvement in CNR of projection-based and image-based weighted images relative to photon-counting for six different energy-bin combinations using a bench top system with a CZT detector. The results showed CNR values ranged between 0.85 and 1.01 for the projection-based weighted images and between 0.91 and 1.43 for the image-based weighted images, relative to the CNR for the photon-counting image. The range of CNR values demonstrates the effects of energy-bin selection on CNR for a particular energy weighting scheme. The non-ideal spectral response of the CZT detector caused spectral tailing, which appears to generally reduce the CNR for the projection-based weighted images. Image-based weighting increased CNR in five of the six bin combinations despite the non-ideal spectral effects

    Estimation of Organ and Effective Dose due to Compton Backscatter Security Scans

    Get PDF
    Purpose: To estimate organ and effective radiation doses due to backscatter security scanners using Monte Carlo simulations and a voxelized phantom set. Methods: Voxelized phantoms of male and female adults and children were used with the GEANT4 toolkit to simulate a backscatter security scan. The backscatter system was modeled based on specifications available in the literature. The simulations modeled a 50 kVp spectrum with 1.0 mm-aluminum-equivalent filtration and a previously measured exposure of approximately 4.6 μR at 30 cm from the source. Photons and secondary interactions were tracked from the source until they reached zero kinetic energy or exited from the simulation’s boundaries. The energy deposited in the phantoms’ respective organs was tallied and used to calculate total organ dose and total effective dose for frontal, rear, and full scans with subjects located 30 and 75 cm from the source. Results: For a full screen, all phantoms’ total effective doses were below the established 0.25 μSv standard, with an estimated maximum total effective dose of 0.07 μSv for full screen of a male child. The estimated maximum organ dose due to a full screen was 1.03 μGy, deposited in the adipose tissue of the male child phantom when located 30 cm from the source. All organ dose estimates had a coefficient of variation of less than 3% for a frontal scan and less than 11% for a rear scan. Conclusions: Backscatter security scanners deposit dose in organs beyond the skin. The effective dose is below recommended standards set by the Health Physics Society (HPS) and the American National Standards Institute (ANSI) assuming the system provides a maximum exposure of approximately 4.6 μR at 30 cm

    A Database for Estimating Scanner-Specific CT Dose

    Get PDF
    Purpose: To develop a database for estimating scanner-specific organ dose in a voxelized patient model for any spectral shape and angular tube current modulation setting. The database enables the estimation of organ dose for both existing and novel acquisition techniques without requiring Monte Carlo simulations. Methods: The transport of monoenergetic photons through three phantoms was simulated with the PENELOPE Monte Carlo radiation transport routines at 5 – 150 keV in 1 keV increments at 1000 projections in 0.36 degree increments. The source-to-detector distance for each simulation was 100 cm, with a source-to-isocenter distance of 50 cm. The lateral and axial extents of the detector were 100 cm and 16 cm respectively, while the detector pixel resolution was 0.25 mm. The first phantom was a 0.5 mm resolution anthropomorphic voxelized female phantom, while the other two phantoms were standard head and chest CTDI cylinders modeled using mathematical quadrics. Results: The simulations resulted in a normalized dose deposition table for numerous organs quantifying the typical dose deposited in the organ per emitted photon for each energy level and projection angle. The values in this table can be multiplied by an incident spectrum and number of photons at each projection angle and summed across all energies and angles to estimate the total organ dose. Similarly, the CTDIvol for a particular acquisition can be estimated from the dose deposition tables for the CTDI phantoms. The estimated CTDIvol can be used along with a physical CTDIvol measurement to convert the organ dose calculated from the database to a scanner specific estimate. Conclusions: The proposed database and procedure enable the estimation of scanner-specific organ dose for CT scans utilizing any spectral shape and angular tube current modulation scheme without requiring Monte Carlo simulations

    Experimental Comparison of Empirical Material Decomposition Methods for Spectral CT

    Get PDF
    Material composition can be estimated from spectral information acquired using photon counting x-ray detectors with pulse height analysis. Non-ideal effects in photon counting x-ray detectors such as charge-sharing, k-escape, and pulse-pileup distort the detected spectrum, which can cause material decomposition errors. This work compared the performance of two empirical decomposition methods: a neural network estimator and a linearized maximum likelihood estimator with correction (A-table method). The two investigated methods differ in how they model the nonlinear relationship between the spectral measurements and material decomposition estimates. The bias and standard deviation of material decomposition estimates were compared for the two methods, using both simulations and experiments with a photon-counting x-ray detector. Both the neural network and A-table methods demonstrated a similar performance for the simulated data. The neural network had lower standard deviation for nearly all thicknesses of the test materials in the collimated (low scatter) and uncollimated (higher scatter) experimental data. In the experimental study of Teflon thicknesses, non-ideal detector effects demonstrated a potential bias of 11–28%, which was reduced to 0.1–11% using the proposed empirical methods. Overall, the results demonstrated preliminary experimental feasibility of empirical material decomposition for spectral CT using photon-counting detectors

    Three-Dimensional Reconstruction Algorithm for a Reverse-Geometry Volumetric CT System With a Large-Array Scanned Source

    Get PDF
    We have proposed a CT system design to rapidly produce volumetric images with negligible cone beam artifacts. The investigated system uses a large array scanned source with a smaller array of fast detectors. The x-ray source is electronically steered across a 2D target every few milliseconds as the system rotates. The proposed reconstruction algorithm for this system is a modified 3D filtered backprojection method. The data are rebinned into 2D parallel ray projections, most of which are tilted with respect to the axis of rotation. Each projection is filtered with a 2D kernel and backprojected onto the desired image matrix. To ensure adequate spatial resolution and low artifact level, we rebin the data onto an array that has sufficiently fine spatial and angular sampling. Due to finite sampling in the real system, some of the rebinned projections will be sparse, but we hypothesize that the large number of views will compensate for the data missing in a particular view. Preliminary results using simulated data with the expected discrete sampling of the source and detector arrays suggest that high resolution

    Noise Simulations For an Inverse-Geometry Volumetric CT System

    Get PDF
    This paper examines the noise performance of an inverse-geometry volumetric CT (IGCT) scanner through simulations. The IGCT system uses a large area scanned source and a smaller array of detectors to rapidly acquire volumetric data with negligible cone-beam artifacts. The first investigation compares the photon efficiency of the IGCT geometry to a 2D parallel ray system. The second investigation models the photon output of the IGCT source and calculates the expected noise. For the photon efficiency investigation. the same total number of photons was modeled in an IGCT acquisition and a comparable multi-slice 2D parallel ray acquisition. For both cases noise projections were simulated and the central axial slice reconstructed. In the second study. to investigate the noise in an IGCT system, the expected x-ray photon flux was modeled and projections simulated through ellipsoid phantoms. All simulations were compared to theoretical predictions. The results of the photon efficiency simulations verify that the IGCT geometry is as efficient in photon utilization as a 2D parallel ray geometry. For a 10 cm diameter 4 cm thick ellipsoid water phantom and for reasonable system parameters, the calculated standard deviation was approximately 15 HU at the center of the ellipsoid. For the same size phantom with maximum attenuation equivalent to 30 cm of water, the calculated noise was approximately 131 HU. The theoretical noise predictions for these objects were 15 HU and 112 HU respectively. These results predict acceptable noise levels for a system with a 0.16 second scan time and 12 lp/cm isotropic resolution

    Quantifying Cross-scatter Contamination in Biplane Fluoroscopy Motion Analysis Systems

    Get PDF
    Biplane fluoroscopy is used for dynamic in vivo three-dimensional motion analysis of various joints of the body. Cross-scatter between the two fluoroscopy systems may limit tracking accuracy. This study measured the magnitude and effects of cross-scatter in biplane fluoroscopic images. Four cylindrical phantoms of 4-, 6-, 8-, and 10-in. diameter were imaged at varying kVp levels to determine the cross-scatter fraction and contrast-to-noise ratio (CNR). Monte Carlo simulations quantified the effect of the gantry angle on the cross-scatter fraction. A cadaver foot with implanted beads was also imaged. The effect of cross-scatter on marker-based tracking accuracy was investigated. Results demonstrated that the cross-scatter fraction varied from 0.15 for the 4-in. cylinder to 0.89 for the 10-in. cylinder when averaged across kVp. The average change in CNR due to cross-scatter ranged from 5% to 36% CNR decreases for the 4- and 10-in. cylinders, respectively. In simulations, the cross-scatter fraction increased with the gantry angle for the 8- and 10-in. cylinders. Cross-scatter significantly increased static-tracking error by 15%, 25%, and 38% for the 6-, 8-, and 10-in. phantoms, respectively, with no significant effect for the foot specimen. The results demonstrated submillimeter marker-based tracking for a range of phantom sizes, despite cross-scatter degradation

    Energy Deposition in the Breast During CT Scanning: Quantification and Implications for Dose Reduction

    Get PDF
    Studies suggest that dose to the breast leads to a higher lifetime attributable cancer incidence risk from a chest CT scan for women compared to men. Numerous methods have been proposed for reducing dose to the breast during CT scanning, including bismuth shielding, tube current modulation, partial-angular scanning, and reduced kVp. These methods differ in how they alter the spectrum and fluence across projection angle. This study used Monte Carlo CT simulations of a voxelized female phantom to investigate the energy (dose) deposition in the breast as a function of both photon energy and projection angle. The resulting dose deposition matrix was then used to investigate several questions regarding dose reduction to the breast: (1) Which photon energies deposit the most dose in the breast, (2) How does increased filtration compare to tube current reduction in reducing breast dose, and (3) Do reduced kVp scans reduce dose to breast, and if so, by what mechanism? The results demonstrate that while high-energy photons deposit more dose per emitted photon, the low-energy photons deposit more dose to the breast for a 120 kVp acquisition. The results also demonstrate that decreasing the tube current for the AP views to match the fluence exiting a shield deposits nearly the same dose to the breast as when using a shield (within ~1%). Finally, results suggest that the dose reduction observed during lower kVp scans is caused by reduced photon fluence rather than the elimination of high-energy photons from the beam. Overall, understanding the mechanisms of dose deposition in the breast as a function of photon energy and projection angle enables comparisons of dose reduction methods and facilitates further development of optimized dose reduction schemes
    • …
    corecore